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The anisotropic behaviour of density-gradient fluctuations in stably stratified grid 
turbulence and the consequences for simplified (isotropic) estimates of scalar dissi- 
pation rates x were experimentally studied in a thermally stratified wind tunnel at 
moderate Reynolds numbers (Re1 2: 20). Strong stable stratifications were attained, 
with Brunt-Vaisala frequency N as high as 4 rads-I. The correlation method was 
used to estimate the mean-square cross-stream and streamwise density gradients. 
Cross-stream gradients were measured using two cold wires. The mean-square ver- 
tical gradients were found to become larger than the streamwise gradients by as 
much as a factor of 2.2 for the largest dimensionless buoyancy times ( N t  = 7). This 
corresponds to a 40% error in the scalar dissipation estimates based on d8/dx alone, 
and assuming the validity of the isotropic relations. Gradient spectral relations show 
that this buoyancy-induced anisotropy persists at all length scales. Better closure of 
the scalar variance balance was attained than in previously reported measurements 
by other researchers. This is attributed to our use of cold-wire temperature sensors 
having larger length-to-diameter ratio than used in the previous measurements. 

1. Introduction 
Turbulent stirring and mixing of scalars is an ubiquitous process in geophysi- 

cal flows. The mixing scalar (e.g. temperature, salinity) often introduces density 
stratifications and therefore has a direct influence on the dynamics of the turbulent 
stirring process through buoyancy forces. In geophysical flows the magnitude of 
mixing or dissipation of scalar fluctuations are usually deduced from unidirectional 
measurements of scalar gradients, e.g. by vertical dropsondes in the ocean and hor- 
izontal tracks in the atmosphere. It is therefore important to know how accurate 
these approximations, invariably based on isotropic relations, are under conditions 
of strong stable stratification. Thoroddsen & Van Atta (1989, 1992~)  have shown 
that in stably stratified grid turbulence the stratification induces strong anisotropies 
in the vertical us. streamwise strain rates, i.e. the ratio of the mean-square values of 
d w / d x  and du/dx  strongly departs from the isotropic value for low turbulent Froude 
numbers. The experiments described here were conducted to investigate whether 

t Also Scripps Institution of Oceanography. 
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FIGURE 1. Schematic of the thermally stratified wind tunnel. 

similar anisotropies also exist in the density gradients and how these might influence 
simplified estimates of the scalar dissipation rate x. Measurements in non-stratified 
flows by Browne, Antonia & Shah (1987) and Krishnamoorthy & Antonia (1987) 
have shown that scalar-gradient anisotropies exist in a heated turbulent wake and 
in a passively heated turbulent boundary layer, respectively. The above-mentioned 
flows are highly inhomogeneous, possessing large-scale mean strain. The generation 
mechanism of the grid turbulence studied here is however close to spatially homo- 
geneous, resulting, in the non-stratified case, in a nearly isotropic turbulence only 
a few mesh lengths downstream from the grid. Grid turbulence has therefore been 
used as the prototypical example of turbulent fields close to isotropy and is thus ideal 
for identifying the source and development of anisotropies due to buoyancy forces, 
since it is not affected by the large-scale non-homogeneities present in wakes, jets and 
boundary layers. 

For the quasi-two-dimensional turbulence state observed at much larger buoyancy 
times than studied here, very large velocity-gradient anisotropies have been observed 
by Yap & Van Atta (1993) and Fincham, Maxworthy & Spedding (1994). 

Studies of isotropic scalar fields, without density stratifications, generated by heated 
grids, have been done by Mills et al. (1958), Yeh & Van Atta (1973) and Warhaft & 
Lumley (1978) to name a few. Warhaft & Lumley studied temperature fluctuations 
where the velocity fluctuations were generated by a biplanar grid, but a separate 
fine zither was used to produce the temperature fluctuations, thus reaching a better 
understanding of the importance of the relative turbulent scale size of the velocity 
and scalar fields. 

2. Experimental setup 
2.1. Thermally stratijied wind tunnel 

The experiments were conducted in a thermally stratified wind tunnel, shown in 
figure 1. The evolution of stably stratified grid-generated turbulence was previously 
studied in this same experimental facility by Lienhard & Van Atta (1990). The 
thermal stratification was produced by an electric heater consisting of heater rods 
and numerous metal triangular fins aligned vertically in the streamwise direction. 
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The 45 heater rods passed through the plates and were wired in 16 independent 
electrically controllable sets. Additional unheated triangular plates were included to 
counterbalance the fin drag and maintain uniform mean velocity in the test section. 
The design specifications of the heating setup are given in Lienhard & Van Atta 
(1989). The wind tunnel was slightly modified before the present experiments. An 
extra screen section was added to dampen velocity and temperature fluctuations 
generated by the heaters. This screen section was located after the heater upstream 
of the contraction and had four steel screens with mesh size of about 1 mm. The 
r.m.s. temperature and velocity fluctuations after the screen section were reduced by 
a factor of 3 from previous results without screens. 

The turbulence was generated by a biplanar grid of 0.48 cm diameter circular steel 
cylinders with a mesh size M of 2.54 cm. The resulting solidity of the grid was 31%. 

The turbulent and mean-value Reynolds numbers are here defined as 

UIA U'P U M  
Re?. = -, Rep = -, ReM = --. 

V V V 
(2.1) 

Their values close to the grids, but after initial transients, are approximately 20, 50 
and 3200 respectively. Here A is the Taylor microscale and the value of the overturning 
length scale P was evaluated from the dissipation as ( U ' ) ~ / F .  

The temperature gradient measurements were taken for four different stratification 
strengths, giving a Brunt-Vaisala frequency N = [ ( g /  TO)(dT/dz)]'/' of 1.25, 2.53, 
3.06 and 4.03 rads-', where g is the gravitational acceleration, T ( z )  is the mean 
temperature, and z is the vertical coordinate. The strongest stratification could be 
achieved only in a thin layer, about 7.5 cm in depth, in the centre of the tunnel. It is 
important to achieve a linear temperature gradient in the test section to assure cross- 
sectional homogeneity of the temperature fluctuations 8 since the scalar fluctuations 
are due to the grid-induced vertical movement of fluid elements relative to this 
background mean density gradient. Figure 2 shows the mean temperature profiles 
for various stratification strengths. The close linearity of these profiles, on the tunnel 
centreline, is evident from this figure. Table 1 lists the mean temperature gradients 
and the corresponding mean velocities during the experimental runs. Mean vertical 
temperature gradient measurements at different down-stream locations in the tunnel 
showed that N was independent of streamwise location. 

The coordinate system used in the subsequent sections locates the origin at the grid 
with the x-axis pointing downstream and the z-axis upwards in the vertical direction. 

2.2. Instrumentation 
2.2.1. Velocity and buoyancy Jlux measurements 

The measurements described in this paper focus on the statistics of temperature, but 
some measurements were also made of fluctuating velocities to identify the dynamical 
states of the turbulence. The vertical and horizontal fluctuating velocities were 
measured using an x-wire probe, thermally corrected by two cold wires placed one on 
each side of the hot wires. The mean instantaneous temperature measured by the two 
cold wires was used to correct the hot-wire signals for the effect of flow temperature, 
since the hot wires respond to both the velocity and temperature of the flow. Extensive 
calibrations of the x -wire/cold-wires probe were performed before and after each 
experimental run. This calibration included yaw-angle calibration as well as velocity 
calibrations at many different constant levels of flow mean temperature. Calibration 
coefficients including corrections for the temperature effects were estimated from these 
calibration data according to the formula derived by Lienhard & Van Atta (1990, 
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FIGURE 2. Mean vertical profiles of temperature, for the four different stratification strengths 

N :  1.25 (rads-') (0); 2.53 (A) ;  3.06 ( 0 )  and 4.03 (*). 

N(rads-') dT/dz ("Cm-') U(ms-') 
1.25 48.4 2.17 
2.53 210.0 2.12 
3.06 3 15.0 1.81 
4.03 542.0 2.18 

TABLE 1. Mean vertical temperature gradient and mean streamwise velocity 
for the different stratification strengths 

p. 62). The subsequent measurements of turbulent velocities were performed for the 
same tunnel setups used for the corresponding temperature gradient measurements. 
We used a Dantec 55P61 x-wire probe and two cold wires positioned within 1 mm 
on both sides of the x-wire as shown in figure 3(a). 

Velocity measurements were not conducted for the strongest of the stratifications 
(N=4 rads-') due to the very large temperature fluctuations in the flow which would 
have contaminated the velocity signals excessively. 

2.2.2. Measurements of fluctuating temperature 

Instantaneous temperature measurements were made with cold wires, fabricated in 
the laboratory. The wire material was platinum, etched from Wollaston wire (0.65 pm 
dia.) and silver-soldered under a microscope to Dantec 55Pll single hot-wire prongs. 
The prongs were pre-bent to obtain the desired wire lengths. Care was taken to make 
the wires as straight as possible. The prong tips were first filed down to a sharp point, 
then small drops of silver solder were placed at the tips and a small film of viscous 
flux placed on top of the solder. Very viscous flux was needed for the film to wet the 
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FIGURE 3. The arrangement of the experimental probes. (a) Top-view of the x-wire/Zcold-wire 
probe used for u,w and 8 measurements. (b)  Two-cold-wire probe for measuring 8 / d z .  The two 
transducers are mounted on opposite sides of a micrometer stage, allowing for fine adjustment of 
their separation. 

tip of the sharpened prongs and not be dragged, by the surface tension, into a drop 
under the tip. This flux would attract the platinum wire to the solder and touching 
the prong with the soldering iron fused the connection. The second connection had 
to be made with the wire having a small arc in it since the second connection tended 
to stretch the wire and, without the arc, break it. 

The cold-wire d.c.-circuits were also made in-house and the basic design is described 
in Haugdahl & Lienhard (1988). The cold-wire current used was 200 FA. 

Selecting the right cold-wire length is not trivial. There is a trade-off between 
attaining sufficient spatial resolution and retaining an adequate frequency response 
of the instrument. There is a need for as short a wire as possible to get good spatial 
resolution, but prong effects have been shown to affect the signal if the ratio of 
wire length to diameter is not large enough, e.g. Browne & Antonia (1987). These 
measurements showed that to avoid serious attenuation of the measured temperature 
fluctuations one needs at least Lw/Dw > 1000. There is also a practical lower limit for 
the diameter of the wire, due to fragility and difficulty in fabrication. We have used 
0.65 pm wire diameter and approximately 0.7 mm wire length. The improved closure 
of the scalar variance balance achieved here indicates that this wire size succeeded in 
resolving all of the significant scales of the temperature fluctuations. 

The Prandtl number P r  = v/a is the ratio of the kinematic viscosity and the thermal 
diffusivity and has the value of 0.71 for temperature in air. The smallest turbulent 
temperature scales are thereby characterized by the Batchelor scale q s  (Batchelor 
1959), 
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where q is the Kolmogorov microscale 

(2.3) 

and E is the viscous dissipation of turbulent kinetic energy. The smallest values of 
were observed close to the turbulence-generating grids and were about 0.3 mm, 

growing downstream as the turbulence decays, becoming larger than 1 mm farthest 
downstream. 

2.2.3. Measurements of the spatial correlation of temperature 
Single-wire measurements of temperature coupled with the application of Taylors’ 

hypothesis were used to estimate the streamwise correlation of temperature. 
However, to estimate the cross-stream correlation of temperature in the turbulent 

field, two cold wires were used. The separation of these two wires was adjusted by 
a small micrometer stage. Figure 3(b) shows schematically the micrometer-connected 
probe holders. The initial separation of the cold wires was determined before the 
probes were moved into the tunnel by using a cathetometer on a stand sitting next to 
the wind tunnel. The separation of the wires was measured with the cathetometer for 
a few different adjusted separations on the micrometer. The initial separation could 
thus be deduced from the off-set in cathetometer readings due to a known change in 
the micrometer setting. The two wires could be brought as close as 0.2 mm with an 
accuracy of 0.02 mm. The wire spans were straight only to that precision, so more 
accurate initial positioning was not neccessary or meaningful. The probe holders with 
the wires were then moved into the tunnel. Once in the tunnel the separation of the 
wires was varied using a lever that was connected through two universal joints from 
the micrometer knob out through a slot in the tunnel floor. The traversing mechanism 
was supported on a rail under the tunnel and the airfoil-shaped wing holding the 
probes travelled along a horizontal slot in the floor. This slot was incrementally 
closed with wedged-in segments and sealed with duct-tape. 

The micrometer setup was tested for possible thermal expansion due to the much 
hotter air inside the tunnel during the stratified runs. This was done by using a 
cathetometer positioned just outside the tunnel to measure the separation of the cold 
wires in situ in the tunnel before and after the flow in the tunnel was heated. The 
thermal expansion of the setup was smaller than the experimental error in reading 
the wire separations and was thus neglected. The initial separation of the cold wires 
was thus, in subsequent runs, measured outside the tunnel using the cathetometer. 

The mean velocity during the correlation studies was measured with a Pitot tube 
placed right next to the cold wires, accounting for the temperature dependence of the 
mean fluid density at the vertical location of the Pitot-tube in the flow. 

2.3. The correlation method 
Temperature gradients can in theory be estimated by the finite difference in tempera- 
ture measured simultaneously by two closely spaced cold wires, but for a very close 
spacing of the two wires the inaccuracies in their individual calibrations will over- 
whelm the gradient signal. To overcome this difficulty the so-called correlation method 
was used to obtain the mean-square spatial gradients of temperature. This method is 
based on the parabolic behaviour of the temperature correlation function for small 
separations of two measurement points A and B. This method avoids the errors 
associated with inaccuracies in the calibrations of the two cold wires. The correlation 
coefficient can be calculated from the linear cold-wire voltages without performing a 
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FIGURE 4. Typical auto- and cross-correlations of the temperature fluctuations, versus change in 
Ax (lines) and Az (*). 

calibration, since when calculating correlation coefficients one subtracts the mean and 
normalizes by the r.m.s. values anyway. The correlation coefficient therefore depends 
only on the frequency response of the wires and not on any systematic calibration 
offset. 

The cross-correlation coefficient of the temperature at two points A and B separated 
by Ax is defined as 

With the assumed homogeneity of the turbulent scalar field, this cross-correlation is an 
even function of the separation Ax. The cross-correlation can therefore be expanded 
in a Taylor series about zero separation, following the notation of Krishnamoorthy 
& Antonia (1987): 

(2.4) 
(Axy 

 AX) = 1 - ~ + o ( A ~ ) ~  

l2 = iF/(ae/ax)? 

222 
where the Taylor microscale A for temperature is defined as followsf: 

If one plots on a log-log graph the quantity 1 - R(Ax) US.  Ax the measurements should 
fall on a line with slope 2 if they follow relation (2.4). The vertical location of this 
best-fit line indicates the relative mean-square magnitude of the r.m.s. temperature 
and the r.m.s. temperature gradient. By performing this procedure in Ax and Az we 
can estimate the ratio of the mean-square gradients in those two directions. 

Figure 4 shows the shape of typical temperature correlation curves for separations 
in the streamwise x- and vertical z-directions. The streamwise correlations were 
calculated for every Az separation, thus giving the number of different lines shown in 
the figure. 

The spatial resolution of the cold wires becomes especially important for very small 

7 Some authors use a definition of the temperature Taylor scale larger by a factor of 4, but we 
have followed the same definition as used for the Taylor velocity scale. 
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FIGURE 5. The effect of wire length, i.e. spatial resolution, on the cross-correlations for small 
separation distances of the two cold wires: 0, +, L,  of 1.25 mm and #, *, L ,  of 0.7 mm. The wire 
diameters were 1 pm and 0.65 pm respectively. 

separation of the two wires. The length of the cold wires relative to the smallest 
wire separations influences the shape of the correlation curves, owing to the spatial 
resolution of each wire. We have briefly studied the effect of this resolution on 
the shape of the correlation curve for small separations. Figure 5 compares the 
correlation coefficients for two different wire lengths, 1.25 mm and 0.7 mm, with 
wire diameters of 1 pm and 0.65 pm, respectively, giving in both cases about the 
same length-to-diameter ratio. These measurements were taken simultaneously at the 
same down-stream location in the wind tunnel. The Batchelor scale at that location 
was about 0.5 mm. The longer-wire data clearly do not follow the above-mentioned 
power-law owing to the insufficient spatial resolution. The shorter wire, on the other 
hand, has evidently sufficient resolution. 

3. Statistical relations for isotropic scalar fluctuations 
3.1. The growth of scalar juctuations 

The scalar fluctuations in this experiment are produced by the turbulence-generating 
grid as the turbulent motions move fluid elements against the background mean 
vertical temperature profile. This generation mechanism is significantly different from 
the procedure used in generating the turbulent scalar fields in many previous studies, 
where the fluctuations are produced by passing the flow through a heated grid, as 
reviewed by Warhaft & Lumley (1978). 

For heated grid experiments the fluctuations are generated at the grid and then 
decay monotonically downstream due to molecular mixing and associated dissipation 
of scalar fluctuations. Here, on the other hand, the initial scalar fluctuations are 
generated by the grid but continue to be generated farther downstream by the largest 
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eddies, as they pull in less-mixed fluid elements from farther away in the density 
gradient until an equilibrium is established between this density flux (stirring) and 
the molecular mixing. Corrsin (1952) has shown that in the passively stratified case 
without molecular mixing the scalar fluctuations would continue growing indefinitely. 
In the stably stratified case this continuing generation of scalar fluctuations is arrested 
by the buoyancy forces, which inhibit the vertical movement of the fluid elements. 
The dynamical equations for stratified flows thus contain an additional buoyancy flux 
term and the effect of the stratification on this heat flux is of major importance for 
the stirring and persistence of the scalar fluctuations. 

3.2. The balance of scalar variance 

For our experimental setup the dynamical evolution of the variance of the temperature 
fluctuations at each location downstream from the grid is determined by the competing 
elements of convection of these fluctuations by the mean flow, the generation of 
temperature fluctuations by the buoyancy flux working against (or with) the mean 
gradient and the molecular dissipation of scalar variance, as described by the following 
equation (see e.g. Van Atta 1985) which was derived assuming homogeneity in the 
vertical direction : 

a -  -dT 
ax dz 

U-82 = - 2 ~ 6 -  - x. 
The scalar dissipation has the form 

ax 

where c1 is the thermal diffusivity. The mean temperature at each measurement 
location and daily atmospheric pressure were used to empirically calculate a. Isotropic 
turbulent scalar fields have direction-independent mean-square scalar gradients due to 
the rotational symmetry. It is therefore sufficient for isotropic fields to measure only 
one of the three gradients (usually the streamwise gradient using Taylor’s hypothesis), 
from which the scalar dissipation is then given by the isotropic relation 

2 

x = 6 a ( g ) .  (3.3) 

Since we have measured all three terms in the balance equation (3.1), its closure can 
be assessed directly as will be done in 94.4. 

3.3. Temperature-gradient correlations and spectral relations 

The spatial correlation of the flumating temperature 0 is direction independent 
for isotropic scalar fields, thus &e(Aq) = &e(Ax). The same is not true for the 
spatial correlation of the gradients of temperature, since the gradient of a scalar field 
is a vector with components both along and perpendicular to the separation vector. 
Figure 6 shows the general correlation setup for the temperature-gradient correlations 
with a spatial separation in x or z. For isotropy, the two cases shown in figure 6 
have identical statistics if one specifies whether the temperature derivative is in the 
direction of the separation vector, Bee( Ax), or perpendicular to it, Bnn(Ax).  Therefore 



392 S.  T. Thoroddsen and C. u/: Van Atta 

FIGURE 6. The relative orientation of the measured temperature gradients 
and the separation vector. 

for separation in the x-direction the longitudinal correlation is defined as 

ae ae 
ax ax 
-(x)-(x + AX) 

whereas the transverse (normal) correlation is 

(3.4) 

(3.5) 

These two correlations are related by an isotropic relation derived by Obukhov (1954). 
We follow here the notation of Panchev (1971), for an arbitrary separation vector Y :  

Note that this relation is fundamentally different from the one applying to the velocity 
correlations, as given by Taylor (1935): _ _  

L 

where the conventional notation is used to identify g ( r )  as the transverse and f ( r )  
as the longitudinal velocity correlations. The normal and longitudinal correlations 
are interchanged in (3.6) and (3.7) and the second term differs by a factor of i. The 
switching of the components arises because the velocity field is a divergence-free field 
( V - u  = 0), but the temperature-gradient field is curl-free, since V x VO(x, y ,  z )  vanishes 
identically. 

From the correlation tensor in equation (3.6) one can derive the corresponding 
spectral form relating the different gradient spectra to each other. These spectral rela- 
tions between streamwise and vertical gradient spectra with respect to the streamwise 
wavenumber have been derived for the isotropic case by Panchev (1971) and indepen- 
dently by Van Atta (1977). The isotropic relation between the two gradient spectra 
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FIGURE 7. Temperature fluctuation levels for all four stratification strengths (rad s-' ). 
0, N = 1.25; A, N = 2.53; *, N = 3.06; +, N = 4.03. 

is 

where the wavenumbers are all taken to be in the streamwise x-direction. This relation 
can be integrated to predict the spectral shape of E&/a,)(3e/az)(kl ) from the measured 
E(ae/ax,(ae/ax)(kl ) and to compare with the gradient spectrum E(ae/az,iae/az)(kl ) measured 
by two coldwires, separated in z ,  as will be done in 94.5. 

Relation (3.8) dictates that E(aepzl(aepz)(kl)  will reach a constant level? for small 
wavenumbers kl and then decrease monotonically with larger wavenumbers since 
the integrand in (3.8) is always positive. This is in sharp contrast to the shape of 
E(ae/ax)(ae/ax)(kl), which is equal to k: Eoe(kl), thus showing a local maximum at a large 
wavenumber and decreasing to zero for both the smallest and largest wavenumbers. 

4. Results 
4.1. Temperature fluctuations and spectra 

Figure 7 shows the development of the temperature fluctuations for all four stratifica- 
tions. For the weakest stratification the fluctuations grow strongly away from the grid 
and have just barely reached maximum by the end of the test section. The data for 
intermediate N values reach their maxima sooner, but display the same qualitative 
trends. However, for the strongest stratification (N  = 4 rad s-l) the fluctuations decay 
quickly and then rebound slightly before continuing to decay. 

The downstream evolution of the temperature spectra is shown in figure 8. It shows 
that the small-scale, high-wavenumber energy is continuously eaten away by diffusion 
and the Batchelor scale grows continuously. Notice, however, that for the larger 
values of N the growth of scalar variance at the large scales is prohibited, whereas for 
the weakest one, N = 1.25 rads-', the large-scale scalar variance continuously grows 

t This requires that E ( a ~ , ~ x , , a ~ , s x , ( k l )  decrease faster than k for small k, which is indeed observed 
as Ese(k l )  is observed to be nearly constant as k approaches zero and the temperature-gradient 
spectrum in question is described by k:Eoo(kl). 
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FIGURE 8. Temperature spectra for all four stratification strengths (rad s-I) and many downstream 
locations. The arrows indicate the evolution of the spectra in the downstream direction. ( a )  N = 
1.25 ( x / M =  15, 30, 60, 100, 145); ( b )  N = 2.53 ( x / M =  10, 30, 60, 100, 145); (c) N = 3.06 ( x / M =  
10, 30, 60, 100, 145); ( d )  N = 4.03 ( x / M =  10, 23, 39, 55 ,  71, 90, 110, 125, 147). 

downstream. This difference demonstrates clearly the presence of buoyancy effects, 
strong enough to limit vertical overturns. Spectra at all intermediate x / M  follow the 
same trends. 

The rebounding in the r.m.s. temperature levels, mentioned above, for N =  4 rad s-', 
could be caused by sufficiently strong restratification, or due to the generation of 
internal wave motions. The distinction between waves and turbulence is often based 
on the phase between w and 8, but since we did not measure w for the largest N this 
approach is not available. Some insight can however be obtained from the spectra of 
the 8 fluctuations. These are shown in figure 8(d)  for many downstream locations for 
the largest value of N .  These spectra show slightly increased energy at frequencies 
larger than N .  This energy may be due to production of 'evanescent' internal waves, 
which have frequencies greater than N ,  decay with distance from their source and do 
not obey the usual dispersion relation, as discussed, e.g., by Leblond & Mysak (1978, 
p. 72). 

This increase is clearly different from the large-scale spectral signature of saturated 
internal waves discussed by Stillinger, Helland & Van Atta (1983) or Gibson (1980). 

4.2. Buoyancy flux 
The buoyancy-flux correlation coefficient is a sensitive gauge of the dynamical sig- 
nificance of the buoyancy forces. For passively stratified turbulence, e.g. Sirivat & 
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FIGURE 9. Buoyancy flux for N = 1.25 (O) ,  2.53 (o), 3.06 (rads-') (A) :  ( a )  vs. x and (b)  us. N t .  

Warhaft (1983), the normalized buoyancy flux reaches a constant level of about 0.70 
for the Prandtl number of our experiment. For the much larger Schmidt numbers 
in experiments using salt-stratified water this constant level for the buoyancy flux is 
cut by almost half, e.g. Stillinger et al. (1983) and Itsweire, Helland & Van Atta 
(1986). The buoyancy fluxes in figure 9 show that all our runs were actively stratified, 
i.e. the temperature cannot be considered a passive scalar, not even for the weakest 
stratification, since the buoyancy forces have started to inhibit the stirring, for the 
largest x / M ,  diminishing the buoyancy-flux correlation. 
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FIGURE 10. Typical downstream evolution of the streamwise auto-correlations of temperature for 
N = 1.25 (rad s-’ ). 

The buoyancy flux has been shown, by Lienhard & Van Atta (1990), to scale 
well with the buoyancy time N t  for similar initial turbulent Froude numbers. This 
is confirmed by our data in figure 9(b). The passive behaviour of the turbulence 
extends only up to Ntl2.n 1: 0.15. For the stronger stratifications the experiments also 
encompass the restratification regime, as demonstrated by a small countergradient 
flux, where -a < 0. 

Since the turbulent velocities were not measured for the strongest stratification 
( N  = 4 rads-’) owing to the experimental difficulties associated with the very large 
temperature fluctuations, the flux could not be estimated for that case. 

4.3. Mean-square temperature gradients 

4.3.1. Auto- and cross-correlations 

The r.m.s. levels of aQ/ax and aQ/az were estimated using the correlation method 
explained in $2.3. Figure 10 shows the development of the temperature auto- 
correlation curves, for the weakest stratification strength, obtained by the use of 
Taylor’s hypothesis. Using numerous separations of the two wires, arranged accord- 
ing to the setup in figure 3(b), we calculated the temperature cross-correlations and 
plotted them on a log-log graph as explained in $2.3. Figure 11 shows the correlations 
for the strongest stratifications. The correlations follow the predicted functional form 
quite well over a range of separations, i.e. they follow a slope of 2 on the log-log 
graph. The adherence to this law is in quantitatively good agreement with the previous 
results of Browne et al. (1987). Since we took measurements for numerous Az we had 
many different time-series to choose from for the linear fit for the Ax separations. In 
figure 4 all of the Ax-correlations were included, giving an indication of their spread. 
To include some indication of the effects of this variability of the auto-correlations on 
the estimate of the strain-rate ratios, we integrated all of these auto-correlation curves 
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FIGURE 11. Auto- and cross-correlations of temperature plotted in a log-log format for evaluation 
of mean-square strain rates using the correlation method, N = 4.03 rads-' for x/M= 10, 20, 30, 
40, 55, 70, 90, 110, 125, 147. (a) Cross-correlations, for many separations Az. Each symbol shows 
results for a different downstream location x. The top curve shows results for the x-location closest 
to the grid. (b )  Auto-correlations using Taylor's hypothesis to change Ax. 

to obtain integral length scales and used the curve which had the median integral 
length scale to estimate the gradients. The curves giving the maximum and minimum 
integral scales were also used as an upper limit for the error due to inaccuracies in 
the auto-correlation estimates. This estimate has been included in figure 12. This 
variability is primarily caused by the limited time-series length collected for each 
separation Az, which was kept as short as possible because we wanted to limit any 
effects of long-term drift in the facility. The sample length had, on the other hand, 
to be long enough to get acceptable convergence of the correlation statistics. The 
resulting compromise of 27 seconds showed sufficient convergence in the &s(Az), as 
is demonstrated in the Appendix. 
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FIGURE 12. The mean-square temperature gradient vertical anisotropy ratios for all stratifications 
(rads-I): (a )  N = 1.25; ( b )  N = 2.53; ( c )  N = 3.06; ( d )  N = 4.03. 

4.3.2. Temperature-gradient anisotropies 

The gradient anisotropy was evaluated by comparing the mean-square values of 
dolax, d e l a y  and do/&. Figure 12 shows the evolution of the ratio of the mean- 
square temperature gradients in the vertical and streamwise directions for all four 
N .  The ratio is initially about 15% larger than the isotropic value of 1.0 and 
anisotropy grows downstream of the grid. This continually growing scalar gradient 
anisotropy contrasts with the arrested anisotropic behaviour we observed earlier for 
velocity gradients (Thoroddsen & Van Atta 1989, 1992a), in which the ratios of 
r.m.s. velocity gradients reached maximum values or even returned toward isotropic 
values far downstream. As for the earlier case of the velocity gradients, the stronger 
the stratification, the stronger the temperature-gradient anisotropy. Figure 13 shows 
the ratio of the previous figure, now scaled with the buoyancy time. The initial 
anisotropy collapses around one curve showing that it initially develops approximately 
linearly with buoyancy time. The trends are consistent for the different stratification 
strengths and the brief apparent reversal in the trend starting at Ntl2.n = 0.5 is 
directly associated with the restratification region as shown in figure 9(b). The most 
anisotropic behaviour of this ratio shows a value of about 2.2 for the largest Nt .  

Figure 13 includes DNS results from Gerz & Schumann (1991). These results 
are qualitatively similar, but anisotropies develop much more quickly than in the 
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FIGURE 13. The vertical gradient anisotropy ratios of figure 12 now scaled us. buoyancy time N t .  
The solid line connecting filled circles shows results from the numerical simulations of Gerz & 
Schumann (1991). 

experiments. This may be due to the different initial conditions evident in the 
figure, which show that the numerical simulations have been started from a highly 
anisotropic state. 

Closest to the grid the vertical gradients are somewhat larger than the streamwise 
ones. This is probably due to the anisotropy in the grid-generation mechanism, 
evident so close to the grid. This is supported by the slight dip in the curves at 
N t  = 0.1, which indicates isotropization immediately after the flow leaves the grid 
and before buoyancy effects become significant. 

The cross-stream horizontal gradients were also measured for one of the stratifi- 
cations, N = 2.53 rads-' and the corresponding ratio is shown in figure 14. The 
horizontal cross-stream gradient shows much smaller anisotropies than the vertical 
one, especially far downstream. This is consistent with buoyancy forces being the 
cause of the vertical anisotropy. 

It should be mentioned here that Thoroddsen & Van Atta (1992b) found that the 
probability density function of N / d z  is skewed in the direction of the mean vertical 
heat flux and they constructed a simple model, based on the mean flux, to explain this 
skewness. This skewness, which was shown not to be caused by buoyancy forces, does 
not directly affect the current discussion of anisotropy caused by buoyancy, since we 
are here studying an even moment of the density gradient field. 

Tong & Warhaft ( 1994) have recently verified and studied this temperature-gradient 
skewness. 

4.3.3. The anisotropy of dissipation estimates 
Using the measured temperature-gradient values presented above, we can estimate 

the accuracy of the dissipation value deduced from only one of those gradients 
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FIGURE 14. The transverse horizontal temperature-gradient anisotropy, for N = 2.53 rad s-l. 

assuming isotropy. To this end, the streamwise temperature-gradient spectra were 
integrated to obtain an estimate of the scalar dissipation rate x based on &?/ax 
through the assumption of isotropy (equation (3.3)). The integration was interactively 
performed on a graphics computer terminal allowing for the inclusion of all significant 
energy above the noise level and the removal of any 60 Hz spikes and their higher 
harmonics from the spectra. The spectra were in general very clean and free of noise 
spikes, as is shown in figure 8. Figure 15 shows this x for all of the stratifications, 
and includes both an estimate based on (aO/ax)2 along with isotropy, as well as an 
estimate combining all three temperature gradients based on figure 12. The r.m.s. 
lateral temperature gradients ( d O / d y )  were only measured for one of the stratification 
strengths, i.e. N = 2.53 rads-'. However, figure 14 showed that the lateral gradient 
was only slightly affected by the buoyancy. It can therefore be reliably estimated 
as a fixed proportion of the aO/ax gradient. This factor is estimated as 1.17 from 
figure 14. 

It can be deduced from the anisotropy results presented in the previous subsection 
that if one were to base the dissipation estimate on the streamwise gradient %/ax 
one would underestimate x by up to 40%, but basing it on aQ/& would on the other 
hand overestimate x by up to 40%, for the largest N t  in our experiments. 

4.4. Closure of the scalar variance budget 

Having measured all the terms in equation (3.1) we can now attempt to verify its 
closure. We define D as 

a -  -dT 
ax dz 

D = U-t12 + 2wQ- + x. 
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FIGURE 15. Temperature dissipation rates for all four stratification strengths (rads-I); N = 1.25 
(o), 2.53 (O), 3.06 (A) and 4.03 (0). The open symbols show results based on 130/ax using isotropy, 
whereas the solid symbols are based on the current estimates of the values of all three temperature 
gradients. 

We have plotted the individual terms in the above relation in figure 16. Looking at 
previous experimental results one notices that, close to the grid, neither Lienhard & 
Van Atta (1990) nor Yoon & Warhaft (1990) have achieved closure of the temperature 
variance balance, as shown in figure 16, but rather show discrepancies as large as 
115% and 90%, respectively, based on the scalar dissipation rates closest to the grids, 
i.e. D / x o .  

Our results for the individual temperature gradients show that, close to the grids, 
the isotropic dissipation relation is most applicable, the dissipation based on the 
isotropic relation being only about 15% from the actual measured value based on all 
three of the gradients. This suggests that the lack of closure of the scalar variance 
balance observed in the two above-mentioned studies is not due to the inaccuracies 
incurred by estimating the scalar dissipation rate based on isotropy. A probable 
explanation is rather the attenuation of the temperature fluctuations due to prong 
effects. This attenuation is due to the small length-to-diameter ratios (L,/D, 1: 400) 
of the cold-wires used in those studies. This dynamic attenuation of the fluctuating 
temperature is not simply a scale factor altering the entire balance in (3.1), since there 
is a static term involved, i.e. the term including the factor dT/dz. Figure 16(c) shows 
the closure achieved here for N = 2.5 rads-'. The closure for the other N values 
was similar. The much better closure achieved here by using L,/D, N 1100 certainly 
indicates that the above deviations are due to prong effects. These conjectures are 
in accordance with careful studies by Browne & Antonia (1987) designed to quantify 
the prong effects. The streamwise gradient in equation (3.1) was estimated from a 
fifth-order polynomial fit to the vs. x curves and x was estimated from the isotropic 
relation for consistency in the comparison with the other researchers. These results 
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FIGURE 16. Closure of the scalar variance balance: the various terms in equation (4.1), normalized by 
the dissipation close to the gid xo.  *, balance D / x o ;  0, scalar dissipation; +, advection; A, buoyancy 
flux. (a) Yoon & Warhaft (1990), ( b )  Lienhard & Van Atta (1990), ( c )  current balance. 

give us added confidence that we have, in the current experiments, accurately resolved 
all of the scalar gradient fluctuations. 

4.5. Temperature-gradient spectra 

Following the discussion in $3.3 the spectral relations between the different 
temperature-gradient spectra were also studied. We first estimated the sensitivity 
of the gradient spectrum E ~ a s l a z ) c a ~ , ~ z , ( k l  ) to the separation distance of the two wires 
used in its estimate. Figure 17 shows the vertical gradient spectra calculated for four 
different separations of the cold wires, at x / M  = 80 where re= 1.5 mm. The data 
shown in this figure have not been filtered, to show the background noise level of 
the instrumentation. The only differences observed between the respective spectra 
are at the highest frequencies. For larger separations the energy at high frequencies 
is larger. This behaviour may be understood as follows. Making a Taylor series 
expansion of the temperature at the second cold wire in terms of the temperature 
and its spatial derivatives at the first cold wire, the measured temperature gradient is, 
up to second-order terms in Az, 

d0 d20Az (nl - n z )  
m A Z  
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FIGURE 17. Spectra of the vertical temperature gradients us. wavenumber obtained using different 
separations of the coldwires, Az = 2, 4, 6 and 8 mm. The spectra have not been filtered to show 
the noise levels in the measurements. The spectrum showing the lowest 'noise'-level on the figure 
corresponds to the 2 mm separation. Larger Az show progressively larger energy levels at high 
wavenumbers, as discussed in the text. 

where d O / d z  and d2f3/dz2 are the true temperature gradient and its spatial derivative 
in the direction of Az, respectively, and n1 and n2 are the electronic noise signals for 
the two cold wires, respectively. Assuming that df3/dz and d 2 8 / d z 2  are uncorrelated, 
and that the temperature field and the electronic noise contributions are uncorrelated, 
the measured mean-square temperature derivative is 

(4.3) 

Note that the contribution from the mean-square second-derivative increases with 
increasing Az, consistent with the trend of the data, while the noise contribution 
decreases with increasing Az. In terms of spectra, and assuming that the noise 
contributions are negligible, we have 

(4.4) 

Since the high-frequency spectral energy spectral levels are nearly independent of 
frequency, the argument can now be completed in terms of either mean-square values 
or spectra. At high frequencies the true spectrum gives a negligible contribution and 
the major contribution comes from the mean-square second-derivative term, which 
scales like the square of Az. 

Equation (4.4) thus predicts that the ratio of the spectral levels for Az = 4, 6 and 8 
mm to those for Az = 2 mm should be 4, 9, and 16, respectively. The measured ratios 
from figure 17 are 2, 5 and 16, respectively, so the above analysis accounts fairly 
well for the observed behaviour. Cross-talk noise between the wires would reduce the 
increase predicted by the above analysis. 
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FIGURE 18. Spectra of 138/az vs. downstream location (ordinate in arbitrary units). (a) N = 1.25 
(rads-') ( x / M =  15, 30, 60, 100, 145) and (b)  N = 4.03 rads-' ( x / M =  10, 23, 39, 55, 71, 90, 110, 
125, 147). 

Figure 18 shows the evolution of the vertical gradient spectrum us. downstream loca- 
tion for the weakest and strongest stratifications studied. The large-wavenumber con- 
tributions to the gradient are most quickly destroyed by molecular diffusion for both of 
these stratification strengths, i.e. the scalar diffusion dissipates the energy of tempera- 
ture fluctuations at the smallest scales and the Batchelor scale grows. For the strongest 
stratifications there is also a monotonic decline in energy at the large scales, whereas 
for the weakest stratification the large-scale gradients retain most of their energy. 

The relations between the different gradient spectra discussed in 53.3 were next 
studied. Equation (3.8) was integrated to predict E(aspz)(a6pz,(kl ) from the measured 
E(jo/ax)c ~ ~ / a ~ ) ( k l ) .  Figure 19(a-d) shows a set of measured and predicted E ( a ~ / a ~ ) c a s p ~ )  for 
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FIGURE 19. Measured and predicted vertical temperature gradient spectra (ordinate in arbitrary 
units), for N = 3.06 rad s-', x / M  = ( a )  15, (b)  40, ( c )  100, ( d )  150. The dotted line shows the 
measured spectrum of the streamwise temperature gradient. The two smooth solid lines show the 
predicted spectrum, using equation (3.8), of the vertical temperature gradient. The jagged solid line 
shows the corresponding measured spectrum of the vertical temperature gradient. 

different downstream locations for N =  3.06 rad s-'. The isotropic relations hold quite 
well near the grid, but farther downstream the spectrum becomes strongly anisotropic. 
Interestingly, anisotropy is observed at all scales. For very large Reynolds numbers 
the conventional expectation is that the large scales will first feel the stratification 
and develop anisotropies before the small scales, in accordance with the notion of 
a cascade. The data show that for the present Reynolds number all scales develop 
anisotropies at about the same rate. The relatively low Reynolds number of the 
present experiments and the uncertainties associated with the sensitivity of cM/dz  to 
the separation of the wires as shown in figure 17 preclude clear determination of 
which scales feel the stratification first. Measurements or DNS at larger ReA would 
be useful to resolve this dilemma. 

It should be noted that the spectral composition of the gradient anisotropy has here 
been studied by looking at the E(iis/az)(ae/az)(kl)-spectra instead of the E~a~/az)(a~/az)(k~)- 
spectra. These two spectra will have different shapes (see 53.4), but their total variance 
is the same, as 

To highlight the spectral composition of the gradient anisotropy, we have formed 
the ratio of the measured E(ae/azl(aepz,(kl)  and the predicted spectrum E&Iaz,caelaz,{kl) 
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RGURE 20. Ratios of the predicted and measured spectra of aO/az, at different downstream 
loactions, corresponding to Nt/27c= 0.15 (thickest solid line); 0.30 (dashed line); 0.46 (medium thick 
line); 0.72 (thinnest line). N =2.53 rad s-’, M =2.54 cm. 

using the measured E(ae/ax)(ae/ax)(kl ). This ratio should therefore take the value of one 
for an isotropic temperature gradient field at every k .  This ratio is shown in figure 20. 
Close to the grid the ratio is close to unity for all wavenumbers. For increasing N t  
the anisotropy grows at all wavenumbers, but somewhat slower at the largest k. 

5. Summary and conclusions 
The ‘correlation method’ has been used to estimate the evolution of the mean- 

square values of the fluctuating temperature gradients, aO/ax, N / a z  and 88/ay for 
different stratification strengths and buoyancy times. Buoyancy forces were found to 
produce anisotropy in the fluctuation levels of dO/dz relative to dO/dx for large N t ,  
while the intensities of the two gradients in the horizontal plane remain nearly the 
same. The mean-square vertical gradient fluctuations observed here are as much as 
2.2 times those for the streamwise gradient. 

Using the measured values of the mean-square gradients we can estimate the 
accuracy of the isotropic dissipation estimates deduced from measurements of only 
one gradient. The results show that if one based the dissipation estimate on the 
isotropic formula using only dO/dx or dO/dz  then x would be respectively under- or 
overestimated by up to 40% for the largest N t  in our experiments. This discrepancy 
may continue to grow for even larger buoyancy times. This is consistent with 
recent LES by Chasnov (1996), at much larger Nt ,  which have shown a trend 
towards a fixed vertical integral length scale while the horizontal scale continues 
growing. The pancake-type structures observed in the late stages of decaying stably 
stratified turbulence also have this property. This is well illustrated in Turner’s book 
(1973, figure 5.10) and by Koop & Browand (1979). Forced turbulence DNS by 
Herring & Mbtais (1989) have also revealed the formation of layered structure. Our 
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FIGURE 21. The convergence of cross-correlation values us. length of averaging time. (a) The 
temperature correlation and ( b )  the correlation of temperature gradients. The convergence is 
portrayed for numerous separations of the two cold wires, showing the convergence for various 
correlation values. Note the different extent of the two time-axes. 

measurements thus give valuable information regarding how quickly the buoyancy- 
affected turbulence develops into a highly anisotropic form after a violent turbulence- 
generating event, such as internal wave breaking. 

The numerical simulations of Itsweire et al. (1993) have studied the vertical density- 
gradient anisotropy of stratified uniform-gradient shear flow. They find an average 
ratio of mean-square temperature gradients in the vertical and streamwise directions 
of 6.5, which is much larger than we see here. This much larger ratio may be caused 
both by the shear, which is zero in our experiments, and the initial large anisotropy 
of the small scales in their DNS as compared with the initial near isotropy of the 
present experiments. 

The temperature gradient spectra are suppressed by buoyancy at all scales, not just 
at the large scales, as was demonstrated by comparing the measured spectra with 
the predicted vertical gradient spectra. This behaviour might be due to a Reynolds 
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number which may not be sufficiently large for dynamical separation of large and 
small scales (ReA N 20), or it could be indicative of a more fundamental behaviour of 
strongly buoyancy-affected turbulence. It would therefore be of interest to measure 
this anisotropy for larger Reynolds numbers, where the separation of scales is more 
significant. 

The authors thank Professors Zellman Warhaft and John H. Lienhard V for 
enlightening discussions. We thank Frank Petach for his help with constructing the 
cold wires. This work was supported by ONR Contract # NOOO14-94-1-0233 and 
NSF grant OCE92-17213. S.T.T. received financial support from the University of 
Illinois Research Board. Some of the present spectral results were previously reported 
by Van Atta (1991). 

Appendix 
In this Appendix we describe experimental results demonstrating the convergence 

of statistical quantities. The convergence rates were used to decide what averaging 
time to use in constructing correlation curves. Figure 21 shows measured values 
of the two-point correlations of temperature and temperature gradients versus the 
time-series length used in their evaluation. The figure shows the convergence rate for 
numerous correlation levels between the two temperature signals in figure 21( a )  as 
well as between the temperature-gradient signals in figure 21 (b). The least-correlated 
signals exhibit the slowest convergence and the gradient correlations converge faster 
than the temperature, owing to the higher frequency contents of the gradients. Note 
the different extent of the time axes for the two graphs in figure 21. Based on these 
results, the averaging time used in the actual correlation estimates was chosen as 27 
seconds, corresponding to approximately 2500 integral time scales. 
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